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PAPER
Identification of Time-Varying Parameters of Hybrid Dynamical
System Models and Its Application to Driving Behavior

Thomas WILHELEM†a), Hiroyuki OKUDA†, Nonmembers, and Tatsuya SUZUKI†, Member

SUMMARY This paper presents a novel identification method for hy-
brid dynamical system models, where parameters have stochastic and time-
varying characteristics. The proposed parameter identification scheme is
based on a modified implementation of particle filtering, together with a
time-smoothing technique. Parameters of the identified model are consid-
ered as time-varying random variables. Parameters are identified indepen-
dently at each time step, using the Bayesian inference implemented as an
iterative particle filtering method. Parameters time dynamics are smoothed
using a distribution based moving average technique. Modes of the hybrid
system model are handled independently, allowing any type of nonlinear
piecewise model to be identified. The proposed identification scheme has
low computation burden, and it can be implemented for online use. Ef-
fectiveness of the scheme is verified by numerical experiments, and an
application of the method is proposed: analysis of driving behavior through
identified time-varying parameters.
key words: hybrid dynamical system models, time-varying parameters
identification, particle filter, driving behavior identification

1. Introduction

Thanks to the recent development of computer technology,
data-centric system design is attracting great attention [1]–
[6]. In the field of system identification, although numerous
dedicated mathematical models have been proposed to rep-
resent target systems [10]–[13], discrete-continuous hybrid
system modeling has great potential to represent complex
dynamical behavior including switching mechanisms [9].

As a result of its high describability and understand-
ability, hybrid system modeling has been applied to various
domains, such as communication systems, autopilot systems,
automotive engine control, traffic control, and chemical pro-
cesses [2]–[9]. A promising application domain of hybrid
system modeling is the human behavior analysis and repro-
duction, due to the possibility to represent both the decision
making and the motion control aspects of human behavior.

From the viewpoint of data-centricmodeling, the Piece-
Wise AutoRegressive eXogenous (PWARX) model is exten-
sively used, and the identification of PWARX model has
been widely studied. Various methods have been developed
[15]. The clustering approach is based on dynamics clus-
tering and on identification of each clustered data set [16].
The bounded-error approach allows to define the maximal
identification error [17]. The mixed-integer programming
approach guarantees to converge to a global optimum [18].
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The algebraic approach defines an analogy to the identifica-
tion and decomposition of an algebraic variety [19]. Finally
theBayesian approach uses theBayesian inference to identify
both parameters and mode partitionning of hybrid systems
from noisy data [20].

From this perspective, the authors have proposed sev-
eral hybrid system modeling methods, especially focussing
on several applications of human driving behavior. A
Stochastic Switching ARX (SSARX) model has been de-
veloped by extending a conventinal Hidden Markov Model
[2]. Hierarchical PWARX (Hi-PWARX) has been devel-
oped with the idea to create a hierarchical structure of the
data based on unsupervised clustering technique [3]. Fi-
nally the Probability-Weighted ARX (PrARX) model has
been developed as a new hybrid system model wherein the
mode switching is represented by softmax function, which
represents the probability of mode occurrence [4].

These works are focused on the identification of time-
invariant hybrid system models. When analysis of the hu-
man driving behavior is considered, it has been shown that
stochastic and time-varying characteristics should be in-
cluded in addition to decision taking mechanisms [30]. Each
driver shows a different response to a given stimuli, leading a
driver’s individual statistical dispersion in the reproduction
of a given action, and under long-time driving situations,
drivers’ behavior can vary drastically. The understanding
of time-varying characteristics of driving behavior through
hybrid system model parameters can inform on driving con-
sistency, expressed as short-term variance, and long-term
driving characteristics, expressed as global model parame-
ters variations. This can also be used as a new source of
information for the design of better driving assistance and
health monitoring systems.

These considerations highly motivated us to develop a
new identification technique for time-varying parameters of
hybrid system models. The parameter identification process
should identify time-varying parameters while complying to
the parameters dynamics.

In the case of fitting a driving model on real-world
measured data, optimality of the identified parameter is not
the final goal. The model can never perfectly represent
the real situation, and noise in the measurement and time-
variability characteristics of the driving behavior are against
the concept of optimal solutions. The major concern in this
type of identification process is the ability to avoid local
minima, and the ability to get parameters estimations within
a known error margin. These perspectives were lacking in
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the previous works [15]–[24].
To realize stochastic and time-varying hybrid system

models parameters identification, parameters are regarded
as random variables and identified with a Bayesian approach
[20]–[22]. The parameters’ time dynamics are also bounded
using a time-smoothing technique.

The proposed identification method differs from the
conventinal Bayesian approachs [20]–[22] in the sense that
as far as we know, former studies did not consider time-
varying parameter explicitely. In the main reference article
on this topic [20], the prior knowledge of Bayes inference
is based on the prior time step. Thus the estimated pa-
rameter θ(k) at time step k depends on the prior time step
identified parameter θ(k − 1), on the observation (model
output) z(k) and on the probability density function (pdf) p.
With this formulation, the identification process directly im-
poses the parameter time-dynamics through the pdf p. The
time-varying dynamics of the parameter are considered im-
plicitely. On the other hand, the method introduced in this
article has been developed to consider explicitely the time-
varying dynamics of the parameters in the identification pro-
cess. The prior knowledge of Bayes inference is based on the
prior identification-step for each time step, such that θi (k)
depends on the same time step k but previous identification
iteration θi−1(k), where i the identification iteration-step,
on the observation (model output) z(k) and on the pdf p.
A filtering process based on moving average with a pdf g
is implemented to explicitely control the identified parame-
ters time-dynamics during the parameter identification. This
method enables us to separate the identification process from
the time-smoothing process.

In Sect. 2 the hybrid dynamical system modeling defi-
nitions are introduced. In Sect. 3 the existing and novel pa-
rameter identification methods are detailed. Then in Sect. 4
the selected application models are presented, and in Sect. 5
examples of parameters identifications are shown. In Sect. 6
driving behavior analysis and modeling are discussed, and
the conclusion is given in Sect. 7.

2. Modeling Definitions

The identified models are piecewise hybrid dynamical sys-
temsmodelswith time-varying parameters. The usual hybrid
dynamical system modeling framework [1] is described as




y (k) = f 1
(
u1(k)

)
+ e1(k) if µ(k) = 1

...

y (k) = f M
(
uM (k)

)
+ eM (k) if µ(k) = M

(1)

where u is the model input, a time-series vector composed
of an external input time-series vector s and of the observed
output time-series vector y , such that u(k) = [s(k), s(k −
1), ..., s(k − na), y (k − 1), y (k − 2), ..., y (k − nb)] where
na ∈ N represents the exogenous input order, and nb ∈ N∗

represents the autoregressive input order. f m is a set of
functions with m ∈ {1, 2, ..., M } the mode index number,
k ∈ {1, 2, ..., K } is the discrete time step, em is the modeling

error, and µ ∈ {1, 2, ..., M }K is the mode index vector.
In signal processing field, filtering is usually applied to

state-space models. For using particle filtering in parameter
identification, dynamical model parameters are usually con-
sidered as model states [21]-[22]. Expressed as a state-space
simulation model, mode equations of the hybrid dynamical
system model (1) become{

xm(k) = hm
p (xm(k − 1), um(k))

ŷ (k) = hm
o (xm(k), um(k)) (2)

where x is the state vector (here observable), u the simulation
model input, ŷ the simulation model output, hp is a process
function, ho is an output fonction and m = µ(k) the mode
index number.

The difference between the dynamical systems ex-
pressed by the Eq. (1) and the Eq. (2) is the formulation
of the system state. In Eq. (1), the dynamical system is ex-
pressed as a transfer function, where the state of the system
is implicitely expressed in the model output y , whereas in
Eq. (2), the dynamical system is expressed as a state-space
system, where the states are explicitely expressed by the
state variable x. Thus state-space formulation enables the
formulation of a larger set of models, including hiden states
models. The formulation (1) is the most common for simple
dynamical models such as the applications models of this
article, but this formulation does not allow to clearly express
the model parameters. Thus, the state-space formulation is
introduced to explicitely represent how the identified param-
eters are included in the filtering problem. Moreover, this
formulation allows notations compliance with the reference
articles [21]-[22]. In that way, Eq. (2) can be considered as
a generalization of Eq. (1).

The parameter vector θ is then assimilated to a state of
the state-space model (2) to be identified by the particle filter
as {

xm(k) = hm
p (xm(k − 1), θm(k), um(k))

ŷ (k) = hm
o (xm(k), θm(k), um(k)) (3)

where θ is the parameter vector extended as a model state.
Finally, expressed as a transfer function hybrid dynam-

ical system model, the state-space simulation model (3) be-
comes




y (k) = f 1
(
u1(k), θµ (k)

)
+ e1(k) if µ(k) = 1

...

y (k) = f M
(
uM (k), θµ (k)

)
+ eM (k) if µ(k) = M

(4)

where θm(k) ∈ Θm is the parameter vector of the mode m at
the time step k and Θm the parameter space of the mode m.

The concept ofmode output occlusion is also introduced
in this section. As described in Eq. (4), the model output y
is a composition of the modes m outputs over the time steps
k depending on the value of µ(k). Thus at each time step
k, M − 1 mode outputs are not observable. These non-
observable mode outputs are called occluded mode outputs.
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During mode output occlusion, time-varying parameters of
the mode cannot be identified.

3. Parameter Identification Process

In this section, the method and the implementation of the
identification process for time-varying parameters are de-
tailed.

In numerous application cases, modeling is a rough ap-
proximation of the real measured data, and the reproduced
situations are non-deterministic. Moreover the raw data used
for model fitting is often known within an error margin. In
those cases, as long as the parameter identification process
error is lower than the modeling error or than the raw data
error margin, an optimal parameters identification scheme
will not bring any advantage over an metaheuristic scheme.
Bayesians methods explicitely enable to select the density
probability of the estimated parameters, and thus to know
the error margin of the estimated parameter in case of iden-
tification convergence.

To be able to identify a wide range of hybrid sys-
tem models, including non-differentiable nonlinear hetero-
geneous hybrid system models, a suboptimal nonparametric
Bayesianmethod is selected. Parameters estimate (posterior)
are calculated based on prior parameters estimates, on the
parameters estimation pdf and on an observation. Parame-
ters are estimated from the marginal distribution in (5) [25].
Nonparametric methods do not rely on a fixed functional
form of the posterior, but instead create an approximate of
the posterior state by a finite number of particles. Thus
nonparametric methods converge uniformly to the correct
posterior as the number of particles goes to infinity.

Bayes rule used for parameter identification is expressed
as follows:

p (θ(k) |z(1 : k)) =
p (z(k) |θ(k))p(θ(k) |z(1 : k − 1))

p (z(k) |z(1 : k − 1))
(5)

where θ(k) ∈ Rnθ is the estimated time-varying param-
eter vector and z(k) ∈ Rnz is the observation. nθ and
nz are the parameters and observation dimensions in N∗.
k ∈ {1, 2, ..., K } represents the current time and identifica-
tion step.

To be able to identify several parameters per mode and
to filter each individual parameter time-variation to its time
dynamic, a novel implementation scheme of the Bayesian ap-
proach based on particle filtering combined with parameter
time-smoothing algorithm is proposed in this article.

3.1 Particle Filtering for Parameter Identification

The particle filter (PF), also called Sequential Monte-Carlo
(SMC), is a nonparametric Bayesian approach, creating a
recursive Bayesian filtering by Monte-Carlo type sampling
[22], [25]–[29]. The key idea in PF is to represent the poste-
rior density by a set of random samples drawn from this pos-

Fig. 1 Standard SIR particle filter identification process.

terior, to calculate associated weights considering an obser-
vation, and then to compute the new estimates based on these
samples and weights. Markov assumption on the parame-
ters is used in system identification to make the calculation
tractable. Particle filters have been used to determine real-
time nonlinear model parameters [21], hybrid system model
(Piecewise ARX) constant parameters and modes estimation
[20], and nonlinear non-hybrid (NARX) time-varying pa-
rameters from a predefined finite parameter set [23]. This
litterature uses a conventional implementaion of the PF, and
as far as we know, does not consider the parameter time-
variation explicitely.

In this paper the Sample Importance Resample (SIR)
scheme is selected over the Sequential Importance Sampling
(SIS) scheme, to avoid the degeneracy problem [22], [25].
Moreover no assumption is taken on the ergodicity of the
parameter time-variation, thus usage of SIS is not possible.
The importance density and the resampling algorithm must
be carefully selected to avoid respectively a large variance in
the particles weights and sample impoverishment. The main
steps of the SIR algorithm are shown in Figure 1.

Standard particle filtering method for parameter identi-
fication is expressed as follow:

Algorithm 1 SIR Particle Filter
{θlr (k) }Lr

lr=1 = SIR
[
{θlr (k − 1), u(k), y(k) }Lr

lr=1

]

for lr = 1 : Lr do
Step 1: Sampling
- Draw θls (k)∼p (θ (k) |θlr (k − 1))

end for
for ls = 1 : Ls do

Step 2: Importance weighting
- Calculate wls (k) = p (y(k) |θls (k), u(k))

end for
- Calculate total weight: wtot (k) =

∑Ls
ls=1 wl (k)

for ls = 1 : Ls do
- Normalize: wls (k) =

(
wtot (tot)

)−1
∗ wls (k)

end for
Step 3: Resampling, using Algorithm 2 in [25]
{θlr (k) }Lr

lr=1 =RESAMPLE
[
{θls (k), wls (k) }Ls

ls=1

]

In Algorithm 1, lr ∈ {1, 2, ..., Lr } is the resampled par-
ticle index, ls ∈ {1, 2, ..., Ls} is the sampled particle index, k
is the discrete time step, θ ∈ Θ the estimated parameter, w is
the associated weigth, u the model input, and y is the model
output.
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Fig. 2 Example of Normal weighting distributions p(θ̄ (k)) over the time
steps k, used to define smoothening particles weights. Black points repre-
sent the smoothened parameter estimate θ̄ (k), curves represent the proba-
bility distribution p(θ̄ (k)) over the possible particles values.

3.2 Smoothing Algorithm

An algorithm of smoothing over time is implemented in the
parameters identification process to avoid the effect of noise
on the parameter identification, and to be able to identify pa-
rameters time-variation within specified dynamics. Param-
eters dynamics filtering can be done independently for each
parameter, enabling dynamics decoupling of the parameters
during the identification process. Smoothing can be done
directly by solving the problem p(θ(k) | y (1 : K ))K ∈N∗, k ∈
{1, 2, ..., K }, but time-smoothed particle filtering methods as
presented in [28] tend to be complex to implement. Thus
a simple moving average method has been adapted in this
work.

Parameter estimates profile is generated based on the
maximum likelihood estimate (see (8)) at each time steps.
This profile is time-smoothened by using a moving average
method (MA) weighted by the pdf g. The smoothened pa-
rameter estimate profile is then used to attribute smoothing
weights to all the particles of the identification process based
on the pdf p (see Fig. 2).

3.3 Algorithm Initialization

In this section, two methods are proposed to initialize the
parameter identification algorithm.

Case A: Data classification is known without a-priori
knowledge on parameters.

The minimum a-priori knowledge required to initialize
the parameter identification method is the modes partition-
ing of the hybrid system model. Numerous methods can be
used to segment the data [24]. Once the mode separation is
obtained, initial particles can be spread uniformly over the
candidate parameters space.

Case B: Prior knowledge from Bayesian parameter
identification approach.

Initial parameters and modes partition can be deter-
mined using a conventinal method developed for the iden-
tification of hybrid systems parameters. The most suitable
solution for nonlinear hybrid system models is the Bayesian
online identification method [20]. This method provides

Fig. 3 Novel parameters identification scheme, composed of an iterative
SIR particle filter and a time-smoothing algorithm. θ̄ i (k) represents the
smooth parameter estimate at iteration i and discrete time step k. Definition
of θ̄ i (k) is given in Eq. (9).

good results for single parameter identification, and can also
be used to provide a-priori knowledge for multiple parame-
ter cases. Nevertheless, the problem proposed in [20] is not
well posed for multiple parameters cases. In this algorithm,
the particles weights would have to be determined based
on a number of time steps at least equal to the number of
identified parameters per mode. This initialization method
is only suitable for cases with clear mode separation in the
data. Regarding the applications of this paper, initialization
of the identification process based on real driving data is
done using Case A.

3.4 Novel Parameter Identification Scheme

In this section, the proposed parameter identification algo-
rithm is described. In order to identify time-varying pa-
rameters of hybrid dynamical systemmodels with parameter
smoothing over time, the particle filter is implemented as
an iterative process instead of a time dependent process (see
Fig. 3). Variables and indexes notations are detailed in Ta-
bles 1 and 2. The pseudocode of the proposed parameter
identification method is detailed in Algorithm 2, and the
method is described as follows:

• Initialization: Particles representative of each param-
eter are initialized.



WILHELEM et al.: IDENTIFICATION OF TIME-VARYING PARAMETERS OF HYBRID DYNAMICAL SYSTEM MODELS
2099

• Step 1: Sampling of the particles is done at each time
step k using a standard particle sampling scheme. A
particle set Ξ = {θls, wls }ls∈{1,2,...,Ls } is generated for
each parameter of each mode at each time step, based
on:

θils (k)∼p
(
θi (k) |θi−1

lr (k)
)
. (6)

• Step 2: If the mode output is not occluded, the particles
weights are calculated using

wi
ls (k) = p

(
y (k) |θils (k), u(k)

)
, (7)

otherwise all particles representing a parameter have
equal weights.

Algorithm 2 Time-varying parameters identification
Θi = Ident_Params

[
Θi−1, u, y

]

Step 1: Sampling
for k = 1 : K (time) do

for m = 1 : M (mode) do
for n = 1 : N (parameters) do

- Draw
{
θm, i
n, ls

(k)
}Ls

ls=1
∼

{
p

(
θm, in (k) |θm, i−1

n, lr
(k)

)}Lr

lr=1
end for

end for
end for
Step 2: Importance weighting
for k,m, ls (time, mode, sampled particles) do

if µ(k) == m then
- Calculate wm, i

ls
(k) = p

(
y(k) |θm, i

ls
(k), u(k)

)
else

- wm, i
ls

(k) = Ls−1

end if
- Normalize wm, i

ls
(k) over ls

end for
Step 3: Smoothing
for k,m (time, mode) do

if µ(k) == m then
- Point estimate index: l̂m (k) = argmax

ls

(
wm, i
ls

(k)
)

else
- Extrapolate: l̂m (k)α

{
l̂m (µk− == m), l̂m (µk+ == m)

}

end if
- Estimate: θ̂m, i (k) = θm, i

l̂m (k )
(k)

end for
for k,m, ls (time, mode, sampled particles) do

- Smooth estimate: θ̄m, in (k) =
∑K

j=1

[
θ̂m, in ( j) ∗ gn ( j |k)

]

for ls = 1 : Ls (sampled particles) do
- Smoothing weights: sm, i

ls
(k) = p

(
θ̄m, i (k) |θm, i

ls
(k)

)
end for
- Normalize sm, i

ls
(k) over l

end for
for k,m (time, mode) do

for ls = 1 : Ls (sampled particle) do
- Final weight: wsm, i

ls
(k) = wm, i

ls
(k) ∗ sm, i

ls
(k)

end for
- Normalize wsm, i

ls
(k) over ls

end for
Step 4: Resampling, using Algorithm 2 in [25]
for k,m (time, mode) do

-
{
θm, i
lr

(k)
}Lr

lr=1 =RESAMPLE
[{
θm, i
ls

(k), wsm, i
ls

(k)
}Ls

ls=1

]

end for

• Step 3: If the mode output is not occluded, the point

Table 1 Identification scheme parameters and variables.
θ One identified parameter
θl One identified particle
ν All parameters stacked in a vector
y Observation
µ Mode index vector
w Particle weight
s Smoothing weight
ws Total weight

Table 2 Identification scheme indexes.
k Discrete time step
i Identification iteration step
m Mode index number
n Parameter number index
lr Resampled particle number index
ls Sampled particle number index

estimate of θi
ls

(k) is calculated for each parameter:

θ̂i (k) = argmax
θ i
ls

(k)∈Ξ

(
wi
ls (k)

)
. (8)

Otherwise θ̂i (k) is extrapolated from adjacent point es-
timates at non-occluded time steps.
Then smooth parameters estimates are calculated from
the point estimates and themoving averageweight func-
tion gn as follows:

θ̄i (k) =
K∑
j=1

[
θ̂i ( j) · gn( j |k)

]
. (9)

Smoothing weights are associated to each particles, and
calculated based on the pdf p, the smooth point esti-
mates and the particles values:

sils (k) = p
(
θ̄i (k) |θils (k)

)
. (10)

Finally, particles weights are recalculated based on the
particles weights (7) and the smoothing weights (10):

wsils (k) = wi
ls (k) ∗ sils (k). (11)

• Step 4: Particles are resampled using a standard par-
ticle resampling scheme, based on the recalculated
weights (11):

θilr (k) =RESAMPLE
[
θi
ls

(k), wi
ls

(k)
]
, (12)

and i is iterated:

i = i + 1. (13)

The algorithm goes to Step 1 if it did not reach the end
criteria (stability of the modeling error e, Eq. (4)).

With this method, the modes of the hybrid dynamical
system model are identified separately. Thus the parameters
of eachmode are different spaces and can take similar values.
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In case of mode output occlusion, values of the parameters
are extrapolated thanks to the integrated time-smoothing pro-
cess. Extrapolation of the parameters could be improved by
replacing the selected MA time-smoothing method with a
more sophisticated method. The proposed parameter identi-
fication scheme has a few limitations. The first limitation is
the number of modes of the hybrid model. A high number
of modes induces frequent output occlusion, and thus results
in low parameter identification accuracy. The second limita-
tion is the number of identified parameters. A high number
of identified implies strong time-smoothing as explained in
Sect. 3.6, and thus it reduces the added value of this method
over a constant parameter identification method. Finally,
very large problems are to avoid due to the high number of
required particles, involving long calculation durations. A
typical problem solved with this method would be composed
of up to 15 parameters distributed in 3 modes.

3.5 Tuning Parameters Details

The created model has two main tuning parameters: the
particle filtering pdf p and the smoothing pdf g. If the pdf are
normal distributions, the tuning parameters can be expressed
as standard deviations. Be aware that normal distributions
are not the best distributions for weighting due to the quick
drop to zeros of the pdf envelope. It can be advised to
use a weighting pdf pStep2 different from the sampling and
resampling pdf pStep1 and pStep4. For example, the weights
wStep2 can be a negative power of the modeling error.

The particle filtering distribution p is used to sample,
weight and resample. For filtering purpose, this pdf is usu-
ally associated to the signal noise. For parameter identifica-
tion, this parameter is usually associated to the input signal
noise, to the algorithmconvergence speed and to the identifed
parameters precision. In the case of the developed param-
eter identification scheme, the particle filtering pdf p is not
used to provide any knowledge from time-prior conditional
probability. Thus the pdf p is only related to the algorithm
convergence speed and to the identifed parameters precision.

The smoothing distribution g proposed in the the de-
veloped parameter identification scheme is used to generate
a filtered point estimate for each parameter at each discrete
time step k. Thus g is the tuning parameter related to the
input noise and to the parameters dynamics. Due to the cre-
ation process of the final weight ws, g is also related to the
algorithm convergence speed. Strong smoothening will have
a negative effect on the algorithm convergence speed.

3.6 Unicity of the Solution

In this section, unicity of the identification equation system
is verified.

For a defined mode m, the identification problem can
be formulated as




ym(1) = h(um(1), θm(1)) + eh(1)
...

ym(k) = h(um(k), θm(k)) + eh(k)
...

ym(K ) = h(um(K ), θm(K )) + eh(K )

(14)

where k ∈ {1, 2, ..., K } is the time step, ym is the mode out-
put vector, h is a model, um is the mode input vector, θm is
the mode parameters vector and e is the modeling error.

The identification problem is formulated as

θ = argmin
θ

∑
k ‖eh(k) ‖

= argmin
θ

∑
k ‖ y (k) − h (r (k), θ) ‖. (15)

If the model parameters are considered as constant,
∀k ∈ {1, 2, ..., K }, θ(k) = θ, and theoretically, if ‖eh(k) ‖ = 0,
as many system equations are the dimention of the parameter
vector ν are required to get a unique solution. Thus hybrid
systems identification processes usually use large sets of data
to get a good guess of the model parameters values. In the
case of time-varying parameters identification, the assump-
tion of constant parameter is not valid. Thus each equation of
the system (14) is independent. The identification problems
have dim(θ) − 1 degree of freedom. A solution to avoid this
issue is frequency decoupling. It can be considered that the
identified parameters have very different natural frequencies,
and thus lower frequencies parameters can be considered as
constant. From this point of view, the problem is about solv-
ing a system with dim(θ) = 1, and a unique solution exist.
This frequency decoupling can be applied in Algorithm 2
through the gn smoothing pdfs.

4. Selected Application Models

This section details the selected application models. The
application goal of this research is to understand drivers
variability and behavior modifications according to models
parameters’ evolution. Thus the selected application models
must have been used for driving modelling and must have
physically understandable parameters values.

Based on these considerations, PieceWise AutoRegres-
sive eXogenous (PWARX) and Gipps microscopic traffic-
flow [14] models have been selected. The PWARX model is
a linear hybrid system model, generalization of the classical
ARX models. Various hybrid ARX models have been used
over the years to describe driving behavior [2]–[4]. Phys-
ical meaning could be attributed to probability weighted
ARX model parameters [4]. Gipps model is a discrete-
in-time continuous-in-space collision avoidance type traffic
flowmodel [11]–[14]. It has been developed for highway use
with the aim to have physically comprehensive parameters.
This model is non-homogeneous and nonlinear.
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4.1 PWARX Model

The PWARX model can be formulated as

y (k)= f (r (k)),
r (k)=[y (k − 1) . . . y (k − na) u(k) . . . u(k − nb)]>,

f (r (k))=




θ1>
[
r (k)

1

]
if r (k) ∈ X1 ⇔ µ(k) = 1

...

θM
>

[
r (k)

1

]
if r (k) ∈ XM ⇔ µ(k) = M

(16)

where k represents the discrete time step, r is the regres-
sion vector, y is the model output, and u is the exogenous
input. The model orders na and nb and the mode number
M are supposed to be known. θm ∈ Rnpw+1 represents the
parameter vector of the mode m, where npw = na + nb .
µ ∈ {1, 2, ..., M }K is the mode index vector.

The data partitions Xm are assumed to be bounded
convex polyhedra, described by

Xm = {r ∈ Rnpw |Hmr ≤ hm} (17)

where Hm and hm are the real valued matrix and vector
describing the mode partitioning. X = ∪M

m=1Xm is as-
sumed to be a bounded convex polyhedron, and ∀(i, j) ∈
{1, 2, ..., M }2, i , j, H i ∩ H j = {0}.

4.2 Gipps Microscopic Traffic Flow Model

Gipps model is composed of two equations. An equation
based on data fitting to reproduce acceleration behavior of the
driver, and an equation based on the mathematical derivation
of the required braking to maintain a safety distance with a
delay characteristic and a delay margin.

Gipps model is expressed by




vη (k + τreac) = v (a) if v (a) ≤ v (b) ⇔ µ(k) = 1
vη (k + τreac) = v (b) if v (a) > v (b) ⇔ µ(k) = 2

va = vη (k) + 2.5aητreac (1 − vη (k)
vη0

)
√

0.025 + vη (k)
vn0

vb = bητreac +
(
b2
ητ

2
reac + bη

[
2(−∆x(k) + sη−1)

+ vη (k)τreac +
vη−1(k)2

bmη−1

])1/2

(18)

where vη is the velocity for the vehicle number η (ego-
vehicle), vη−1 is the velocity of the vehicle η − 1 (leading
vehicle), k represents the discrete time step, τreac is the ap-
parent driver reaction time steps, vη0 is the desired free flow
velocity of the vehicle η, sη−1 is the length + stopping dis-
tance of the vehicle η − 1, aη is the maximum acceleration

of the vehicle η, ∆x = xη−1 − xη is the relative distance
between the vehicle η − 1 and the vehicle η, bη is the max-
imum desired braking acceleration of the vehicle η, bmη−1
the estimation of the most severe braking of vehicle η − 1.

The inputs of Gipps model are vη (k), vη−1(k) and ∆x.
The output of Gipps model is vη (k + τreac). The parameters
of Gipps model for the vehicle η are aη , vη0, τreac , bη , sη−1
and bmη−1

5. Parameters Identification Examples

In this section, validation of the developed parameters
identification scheme is proposed. To validate the iden-
tification procedure, PWARX and Gipps model are used.
This allows to cover linear and nonlinear cases, and single
and multiple parameters cases. The particle filtering pdf
p = pStep1 = pStep4 is Gaussian with a mean equal to zero
and a standard deviation σp , weighting of the particles is
done based on the inverse of the square root of the modeling
error, and the MA smoothing pdf g is Gaussian with a mean
equal to zero and a standard deviation σg. Parameter identi-
fication examples are done with at most two simultaneously
identified time-varying parameters per mode, and twomodes
per model. As expalined in Sect. 3.6, the number of param-
eters should be kept low in order to be able to identify high
frequency time-variations. The number of modes can be
higher, but a high number of modes implies frequent mode
output occlusion, and thus reduces the parameters identifi-
cation precision.

5.1 One Identified Parameter Case, PWARX Model

The test input, output and parameters are generated by the
following system:

f (x) =




θ1(k)>
[
x(k)

1

]
if µ(k) = 1

θ2(k)>
[
x(k)

1

]
if µ(k) = 2




θ1(k)> =
[
0.5 + sin(k∗12)

4 0.5
]

θ2(k)> =
[
−1 + sin(k∗6)

6 2
]

x(k) = u(k) = [−2.5 − 2.49 . . . 2.5]

(19)

where k ∈ {1, 2, ..., K } is the discrete time step, and µ is the
mode index vector.

Only the first parameter of each mode is studied. This
parameter identification example uses 10 particles per pa-
rameter, with a sampling coefficient of 10, σp = 0.05, and
σg = 2. Initialization is done with random particles in the
[−2.5; 2.5] range. The results of Fig. 4 are obtained in 5
identification iterations. As shown in Fig. 4, the developed
parameter identification method can filter out noise in pa-
rameter values while preserve the parameters dynamics. It
can be observed that the parameters are correctly identified.
The identification time was 62 seconds on an Intel i5@3GHz
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Fig. 4 Parameter identification of a two modes one time-varying param-
eter per mode PWARX model.
unθ̂m represents the uncertanity of the parameter estimation, based on σp

and on mode output occlusion, θm the true parameters values, θ̂m
−NS

the
non-smoothened parameters estimate values and θ̂m the final parameters
estimates.

computer with 8GB or RAM.

5.2 Multiple Identified Parameters Case, PWARX Model

In this section, results from the PWARXmodel withmultiple
simultaneous time-varying identification are shown. The
problemdefinition is the same than in (19), with the following
time-varying parameters




θ1(k)> =
[
1 + sin(k∗12)

4 0.5 + sin(k∗1.2)
8

]

θ2(k)> =
[
−1 + sin(k∗6)

6 2
]
.

(20)

This parameter identification example uses 10 particles
per parameter, with a sampling coefficient of 10, σp = 0.05,
σ1
g = 2 and σ2

g = 20. Initialization is done with ran-
dom particles as shown in Fig. 5. 10 iterations i are done.
As shown in Fig. 6, simultaneous identification of mul-
tiple time-varying parameters could be realized. When
parameters cannot be identified, values of the parameters
are extrapolated. Identification error can be observed, as
the number of particles is kept low to enable fast identi-
fication. Nevertheless, values of time-varying parameters
are closer to ideal than a constant parameter. In Fig. 7,
em =

∑
k[µ(k)=m] ‖ f m(θ(k)) − f m(θ̂(k))‖1 represents the

total modeling error per mode m. When identification error
stabilizes, the identification process convergence is assumed.
The modeling errors do not converge to zero due to the fil-
tering and to the extrapolation processes. The identification
time was 118 seconds on an Intel i5@3GHz computer with
8GB or RAM. This computation speed opens the method to
online parameters identification.

5.3 One Parameter Case, Nonlinear Model

In this section, the efficiency of the model is assessed with

Fig. 5 Initial particles for two modes two parameters per mode PWARX
model. In orange crosses the initial particules for m = 1, in blue circles the
initial particles for m = 2 and in black dots the true parameters values.

Fig. 6 Parameter identification of a two modes two parameters per mode
PWARX model.
unθ̂ represents the uncertanity of the parameter estimation, based on σp

and on mode output occlusion. θmn are the true parameter values of param-
eter number n of mode m and θ̂mn are the final parameter estimates.

Fig. 7 Parameter identification error of a two modes two identified pa-
rameters per mode PWARX model.

the heterogeneous nonlinear car-following Gipps traffic flow
model, expressed in Eq. (18).

The identified parameter is b of the braking equation
vb , corresponding to the mode m = 2. Gipps model first
runs with a known time-varying parameter b(k) to generate
a known output. Other Gipps model parameters are known
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Table 3 Gipps model parameters values.
Variable v0 s0 τreac a b bm

Value 20 6.5 0.3 1.7 θ (k) -3.2

Fig. 8 Leading vehicle velocity data used in the generation of the example
output data and for the time-variying parameter identification.

Fig. 9 Low frequency parameter time-variation case.
unθ̂ represents the uncertanity of the parameter estimation, based on σp .
b is the true parameter and b̂ is the final parameter estimate.

and constant (see Table 3). The leading vehicle velocity and
relative distance used for this example are extracted from a
real-world measurement. The velocity of the leading vehicle
is showed in Fig. 8.

Figure 9 and Fig. 10 show the identification of the time-
varying parameter b(k), with different time-variation fre-
quencies. As described in Eq. (18), the parameter b is in
the braking mode, enabling parameter identification when
µ(k) = 2.

As shown in Fig. 9 and Fig. 10, it can be observed that
the parameter b is correctly identified. ε (k) = ‖θ(k)−θ̂(k)‖1
represents the time-varying parameter estimation error. This
parameter identification error is low as long as µ(k) = 2.
Thus the proposed parameter identification method can be
used to interpret driving behavior through model time-
varying parameters. The identification time was 26 seconds
on an Intel i5@3GHz computer with 8GB or RAM. This
speed of execution opens this method to online parameter
identification.

Fig. 10 High frequency parameter time-variation case.
unθ̂ represents the uncertanity of the parameter estimation, based on σp .
b is the true parameter and b̂ is the final parameter estimate.

6. Driving Behavior Applications Discussion

In this section, a discussion about the application for driver
behavior analysis and modeling is proposed.

A large variety of driver modeling methods have been
researched in the past years. Initial studies focused on the hu-
man psychophisical reactions [10], then an important high-
light has been done on the creation of microscopic traffic
flowmodels from data analysis [11]–[14], and more recently
a focus is done on the usage of machine learning methods
[1]–[6]. While most of these models can have parameters
attributed a physical meaning, understanding of the driver
behavior from the point of view of the parameters is not
common practice. Different aspects of the driving behav-
ior could be investigated from the analysis of time-varying
parameters: the driver consistency expressed by high fre-
quency parameters variations or a statistical parameter vari-
ance, and the driver behavior modifications expressed by
low frequency parameters variations or global parameters
changes [31]. Online analysis of the parameters could also
be considered for indirect sensing of the human state during
the driving operation [4].

Once analysis of drivers is done, we believe that mod-
eling of the human stochasticity could be done. This new
class of modeling techniques could be implemented in fu-
ture driver models for more realistic traffic flow simulations,
for naturalistic traffic vehicles behavior prediction in au-
tonomous cars, or for advanced driver-personalized driving
assistance systems.

7. Conclusion

In this paper, an iterative metaheuristic method based on
particle filtering and moving average time-smoothing has
been created to identify time-varying nonlinear hybrid sys-
tem model parameters. The proposed method enables us to
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identify the parameters of nonlinear non-heterogeneous hy-
brid dynamical systemmodels, while filtering the parameters
time-variation based on the possible parameters dynamics.
This method has a low computation burden and can be im-
plemented for online use. The effectiveness of this method
is verified by numerical experiments, including linear and
nonlinear hybrid dynamical system models, represented by
PWARX and Gipps car-following driver model. Finally,
the application of time-varying parameters identification to
driving behavior analysis and modeling is proposed.
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